A Modified Description of Early Time High-altitude Electromagnetic Pulse Waveform (E1)

نویسنده

  • Yan-zhao XIE
چکیده

The mathematical description of High-altitude Electromagnetic Pulse (HEMP) waveform (E1) in the standard of IEC 61000-2-9 is the difference of double exponentials (DEXP). However, in this description there is a discontinuity of the first derivative at the initial time of waveform. Another analytic waveform description, the quotient of double exponentials (QEXP) has the advantage of all time derivatives continuous, but an additional time shift parameter must be used since the amplitude is nonzero for negative time. To address these problems, this paper offers a modified description, namely p-power of double exponentials (PEXP). The parameter values in PEXP description corresponding to IEC 61000-2-9 have been fitted by means of varied power of double exponentials. The analysis results demonstrate that the PEXP description has two advantages of the continuous derivative at initial time of waveform and no need of the time shift factor. Key Words— HEMP Waveform Description, Discontinuity, Difference of Double Exponentials (DEXP), Quotient of Double Exponentials (QEXP), p-power of Double Exponentials (PEXP)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risetime Evolution in HEMP (High-Altitude Electromagnetic Pulse) E1Waveforms - Technology and Standards

There are many different definitions of the risetime of a transient waveform. In the context of HEMP standards, the 10-90% risetime of an idealized double exponential waveform has been defined and used for many decades. However, such a risetime definition is not strictly applicable to the transient voltage out of a pulse generator, since no practical switch can close in zero time. In this paper...

متن کامل

Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation

Computational aspects of EM pulse propagation along the nonuniform earth surface are considered. For ultrawide-band pulses without carrier, the exact wave equation in a narrow vicinity of the wave front is reduced to a time-domain version of the LeontovichFock parabolic equation. To solve it by finite differences, we introduce a time-domain analog of the impedance BC and a nonlocal BC of transp...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

Design of Monophasic Spike-Exponential Waveform for Functional Electrical Stimulator Based on Pulse Width Modulation

The Functional Electrical Stimulator design using monophasic spike-exponential waveform was proposed and described in this study. The monophasic square waveform has benefit in generating an action potential, but it could cause side effects such as toxic caused by the electrode polarization. The square waveform signal which the frequency and pulse width could be modulated was manipulated to be t...

متن کامل

Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013